Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2026
-
Free, publicly-accessible full text available July 9, 2026
-
Free, publicly-accessible full text available June 1, 2026
-
Distributional data have become increasingly prominent in modern signal processing, highlighting the necessity of computing optimal transport (OT) maps across multiple probability distributions. Nevertheless, recent studies on neural OT methods predominantly focused on the efficient computation of a single map between two distributions. To address this challenge, we introduce a novel approach to learning transport maps for new empirical distributions. Specifically, we employ the transformer architecture to produce embeddings from distributional data of varying length; these embeddings are then fed into a hypernetwork to generate neural OT maps. Various numerical experiments were conducted to validate the embeddings and the generated OT maps.more » « lessFree, publicly-accessible full text available June 22, 2026
-
Free, publicly-accessible full text available August 1, 2026
-
Free, publicly-accessible full text available February 10, 2026
-
Motivated by approximation Bayesian computation using mean-field variational approximation and the computation of equilibrium in multi-species systems with cross-interaction, this paper investigates the composite geodesically convex optimization problem over multiple distributions. The objective functional under consideration is composed of a convex potential energy on a product of Wasserstein spaces and a sum of convex self-interaction and internal energies associated with each distribution. To efficiently solve this problem, we introduce the Wasserstein Proximal Coordinate Gradient (WPCG) algorithms with parallel, sequential, and random update schemes. Under a quadratic growth (QG) condition that is weaker than the usual strong convexity requirement on the objective functional, we show that WPCG converges exponentially fast to the unique global optimum. In the absence of the QG condition, WPCG is still demonstrated to converge to the global optimal solution, albeit at a slower polynomial rate. Numerical results for both motivating examples are consistent with our theoretical findings.more » « less
-
Motivated by approximation Bayesian computation using mean-field variational approximation and the computation of equilibrium in multi-species systems with cross-interaction, this paper investigates the composite geodesically convex optimization problem over multiple distributions. The objective functional under consideration is composed of a convex potential energy on a product of Wasserstein spaces and a sum of convex self-interaction and internal energies associated with each distribution. To efficiently solve this problem, we introduce the Wasserstein Proximal Coordinate Gradient (WPCG) algorithms with parallel, sequential, and random update schemes. Under a quadratic growth (QG) condition that is weaker than the usual strong convexity requirement on the objective functional, we show that WPCG converges exponentially fast to the unique global optimum. In the absence of the QG condition, WPCG is still demonstrated to converge to the global optimal solution, albeit at a slower polynomial rate. Numerical results for both motivating examples are consistent with our theoretical findings.more » « less
-
Empirical studies have demonstrated the effectiveness of (score-based) diffusion models in generating high-dimensional data, such as texts and images, which typically exhibit a low-dimensional manifold nature. These empirical successes raise the theoretical question of whether score-based diffusion models can optimally adapt to low-dimensional manifold structures. While recent work has validated the minimax optimality of diffusion models when the target distribution admits a smooth density with respect to the Lebesgue measure of the ambient data space, these findings do not fully account for the ability of diffusion models in avoiding the the curse of dimensionality when estimating high-dimensional distributions. This work considers two common classes of diffusion models: Langevin diffusion and forward-backward diffusion. We show that both models can adapt to the intrinsic manifold structure by showing that the convergence rate of the inducing distribution estimator depends only on the intrinsic dimension of the data. Moreover, our considered estimator does not require knowing or explicitly estimating the manifold. We also demonstrate that the forward-backward diffusion can achieve the minimax optimal rate under the Wasserstein metric when the target distribution possesses a smooth density with respect to the volume measure of the low-dimensional manifold.more » « less
An official website of the United States government

Full Text Available